在该项工作中,研究人员首先利用他们前期发展的过渡金属催化碳化有机小分子的方法(Nature Communications 2015,6, 7992;Science Advances 2018,4, eaat0788),合成了硫掺杂介孔碳(S-C)载体材料,并采用传统的浸渍法使用该S-C载体材料制备出两种不同的Pt催化剂材料:Pt单原子(PtSA/S-C)与Pt纳米团簇(PtNC/S-C)催化剂。球差校正透射电镜(HAADF-STEM)和同步辐射X-射线吸收谱(EXAFS和XANES)表征结果证实了Pt单原子和Pt纳米团簇结构特征,即二者都直接与碳载体上的硫原子键合(图2a,b)。有趣的是,研究人员通过分析对比样品的X-射线光电子能谱(XPS)和XANES谱,发现了Pt与S-C载体之间的电荷转移方向随着Pt尺寸的变化而反转的新现象:当Pt为单原子时,其电子向S-C载体转移;而当Pt为1.5 nm团簇时,电子从S-C载体向Pt转移。同时,理论计算的电荷分析结果进一步证实了这种Pt和S-C载体之间电荷转移的反转现象(图2c,d)。
图1. S-C负载的Pt单原子与Pt纳米团簇合成示意图以及电荷转移变化。
图2. S-C负载的Pt单原子与Pt团簇的结构表征:(a)Pt单原子的HAADF-STEM图;(b)Pt纳米团簇的HAADF-STEM图;(c)Pt纳米团簇的差分电荷密度分析;(d)Pt单原子的差分电荷密度分析。
进一步,研究人员探究了上述两种催化剂的电催化析氢反应性能。实验结果表明,具有富电子特性的Pt纳米团簇的催化活性明显优于缺电子的Pt单原子和商业的Pt/C催化剂。理论计算表明,对于Pt团簇体系,S-C载体上的电子向Pt团簇转移,导致Pt上的电子云密度上升,H*吸附的吉布斯自由能下降,HER活性提升。该项工作阐述了一种对金属和载体之间电荷转移现象的新理解,为高效催化剂的设计提供了一种基于电荷转移调控的新思路。
该项研究得到了国家自然科学基金、国家重点研发计划基金、中央高校基本科研业务费专项基金、以及中国科学技术大学同步辐射联合基金的资助。
文章链接:https://www.nature.com/articles/s41467-019-12851-w