欢迎来到化学加!萃聚英才,共享化学!化学加,加您更精彩!客服热线:400-8383-509

化学加_合成化学产业资源聚合服务平台

电子科大​首次以第一单位在Nature上发表研究成果,推动超疏水表面走向应用

来源:电子科技大学      2020-06-22
导读:6月3日,Nature刊发了电子科技大学基础与前沿研究院邓旭教授团队最新研究成果“Design of robust superhydrophobic surfaces”,并被选为当期封面。

 image.png

  该工作提出去耦合机制将表面浸润性和机械稳定性拆分至两种不同的结构尺度,通过在两个结构尺度上分别进行最优设计,为超疏水表面创造出具有优良机械稳定性的微结构铠甲,解决了超疏水表面机械稳定性不足的关键问题。该工作第一作者为我校基础与前沿研究院博士生王德辉,基础与前沿研究院邓旭教授为论文通讯作者,论文工作主要在子科技大学完成。这是子科技大学首次以第一单位在Nature上发表研究成果,标志着子科技大学在材料表面科学研究域取得了重大突破。合作者还有子科技大学物理学院陈龙泉教授和机械与电气工程学院朱顺鹏教授。
背景介绍
  仿生荷叶的超疏水材料由于其独特的固-液界面性质,在表面自清洁、生物防污、防水抗结冰、流体减阻以及传热传质等领域展现出了巨大的应用潜力,随之又发展出了一系列如超亲水、超疏油等超浸润系统理论。以江雷院士团队,David Quéré教授团队等为代表的国内外广大研究群体在固液界面材料研究领域建立了坚实的理论和应用基础,并取得了丰硕的研究成果[1-4]。
  一般情况下,材料表面实现超疏水性需要借助微/纳米粗糙结构和低表面能截留空气并托起液滴,实现Cassie-Baxter态的同时创造低的固-液接触。然而,微/纳米粗糙结构在机械载荷下会产生极高的局部压强,使其易碎易磨损。此外,磨损会暴露底层材料,改变表面的局部化学性质使其从疏水性变成亲水性,导致水滴钉扎。长期以来,人们认为表面的机械稳定性和超疏水性是相互排斥的两个特性,正所谓“鱼和熊掌不可兼得”。因此,如何保证在拥有良好超疏水性能的同时,又能实现较强的机械稳定性,是当前超疏水材料面对实际应用亟待解决的关键难题[5]。
成果简介


image.png
微结构铠甲的设计(图片来源Nature)
  通常,减少固-液接触是增强表面超疏水性的常用手段,根据Cassie-Baxter方程,固-液接触面积的减小,有利于提高表观接触角和降低滚动角。但由于接触面积的降低,必然导致微/纳结构承受更高的局部压强,从而更易磨损,这就意味着超疏水性和机械稳定性在提高一种性能时必然导致另一种性能下降。该论文基于全新思路,首次通过去耦合机制将超疏水性和机械稳定性拆分至两种不同的结构尺度,并提出微结构“铠甲”保护超疏水纳米材料免遭摩擦磨损的概念。结合浸润性理论和机械力学原理分析得出微结构设计原则,利用光刻、冷/热压等微细加工技术将装甲结构制备于硅片、陶瓷、金属、玻璃等普适性基材表面,与超疏水纳米材料复合构建出具有优良机械稳定性的铠甲化超疏水表面。
image.png
铠甲化超疏水表面展现出优秀的机械稳定性(图片来源Nature) 
  该工作在集成高强度机械稳定性、耐化学腐蚀和热降解、抗高速射流冲击和抗冷凝失效等综合性能的同时,还实现了玻璃铠甲化表面的高透光率,为该表面应用于自清洁车用玻璃、太阳能电池盖板、建筑玻璃幕墙创造了必要条件。研究人员将该表面应用于太阳能电池盖板,实现了表面依靠冷凝液滴清除尘埃颗粒的自清洁方式,为少雨地区提供自清洁太阳能电池的解决方案。基于玻璃装甲化表面的自清洁技术可巧妙地利用雨或雾滴消除粉尘、鸟类粪便等污染,长期维持太阳能电池高效的能量转换,并节省传统清洁过程中必需的淡水资源和劳动力成本。该论文创新的设计思路和通用的制造策略展示了铠甲化超疏表面非凡的应用潜力,必将进一步推动超疏水表面进入广泛的实际应用。
image.png
高透光率的玻璃铠甲化超疏水表面应用于自清洁太阳能电池板(图片来源Nature)

  参考文献:

  1.Lin Feng, Shuhong Li, Yingshun Li, Huanjun Li, Lingjuan Zhang, Jin Zhai,Yanlin Song, Biqian Liu, Lei Jiang, DaobenZhu.Super‐hydrophobic surfaces: from naturalto artificial.Advanced Materials, 14, 1857-1860 (2002)

  2.YongmeiZheng, HaoBai, Zhongbing Huang, XuelinTian, Fu-QiangNie, YongZhao, Jin Zhai, Lei Jiang.Directional water collection on wetted spidersilk.Nature, 463, 640-643 (2010)

  3.David Quéré. Wettingand roughness.Annual Review of Materials Research, 38, 71-99 (2008)

  4.Qiangqiang Sun, Dehui Wang, Yanan Li, Jiahui Zhang, Shuji Ye, Jiaxi Cui,Longquan Chen, Zuankai Wang, Hans-Jürgen Butt, Doris Vollmer, Xu Deng.Surfacecharge printing for programmed droplet transport. Nature Materials, 18, 936-941(2019)

  5.XuelinTian, TuukkaVerho, Robin HA Ras. Moving superhydrophobic surfacestoward real-world applications.Science, 352, 142-143(2011)

课题组介绍:
image.png
  邓旭,电子科技大学基础与前沿研究院教授,材料表面科学研究中心、德国马普学会伙伴小组联合实验室负责人,主要研究领域为材料表面科学、物理化学、仿生工程等。已在Science, Nature, Nature Materials, NatureCommunications, Physical Review Letter, AngewandteChemie International Edition,Advanced Materials等国际著名期刊上发表文章60余篇,并被Nature,Nature Nanotechnology,Nature Physics,MIT Technology Review等国际知名学术媒体多次专题报道。作为主要发明人获得欧洲发明专利3项,美国发明专利2项,中国发明专利5项。荣获国家青年人才、四川省学科技术带头人(2019)、国际仿生学会青年委员(2019)、中国化学会仿生材料化学委员会委员(2019)、中国十大科技新锐人物(2019),中国化学会首届菁青化学新锐奖(2019)。
image.png
  王德辉,电子科技大学基础与前沿研究院2016级博士研究生,以第一作者或合作者在Nature, Nature Materials, Advanced Materials, Soft Matter等国际著名杂志发表文章10余篇,被引260余次。其中,以第一作者发表在Nature的研究论文被选为封面报道。申请国家发明专利10余件,授权7件。
image.png
  课题组网址:
  http://www.ccsi.uestc.edu.cn/
  相关信息:
  Dehui Wang, Qiangqiang Sun, Matti J. Hokkanen, Chenglin Zhang, Fan-Yen Lin,Qiang Liu, Shun-Peng Zhu, Tianfeng Zhou, Qing Chang, Bo He, Quan Zhou,Longquan Chen, Zuankai Wang, Robin H. A. Ras, Xu Deng. Design of robustsuperhydrophobic surfaces.Nature, 582, 55-59 (2020)
  论文DOI:10.1038/s41586-020-2331-8
  文章链接:https://www.nature.com/articles/s41586-020-2331-8


声明:化学加刊发或者转载此文只是出于传递、分享更多信息之目的,并不意味认同其观点或证实其描述。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 电话:18676881059,邮箱:gongjian@huaxuejia.cn