欢迎来到化学加!萃聚英才,共享化学!化学加,加您更精彩!客服热线:400-8383-509

专业的精细化工医药产业资源供需及整合平台

Science:东南大学在燃料电池领域研究取得重大进展

来源:东南大学      2020-08-03
导读:7月10日国际著名期刊《Science》刊发论文《电场诱导异质界面金属态构建超质子传输》(Proton transport enabled by a field-induced metallic state in a semiconductor heterostructure)。东南大学太阳能技术研究中心/储能联合研究中心首席科学家朱斌教授为该论文共同一作和主通讯作者,此项研究成果标志着东南大学在燃料电池领域相关研究取得了重大进展。

image.png

燃料电池是国家能源发展战略的一个重点领域。电解质是燃料电池的核心组成部分,其离子电导率的性能决定了燃料电池性能的优劣,目前制约燃料电池性能开发与应用的瓶颈是较低的离子电导率的电解质。

固体氧化物燃料电池(SOFC)的电解质的发展历经百年,至今没有可以替代其钇稳定二氧化锆(YSZ)氧离子传导电解质材料,其氧离子电导率在约1000°C才达到高性能SOFC电导率要求的0.1 S/cm。为了解决这个挑战,诺奖获得者古迪纳夫在2000年Nature发文提出要设计氧离子导体,其方法是传统的结构离子掺杂方法,即通过低价阳离子取代高价阳离子,例如Y3+掺杂结构Zr4+,形成氧空位,进而产生氧离子电导率。但是,结构掺杂没有解决SOFC电解质的挑战。阻碍了燃料电池的商业化进程。

朱斌教授等人采用完全不同于传统离子导体结构掺杂的方法,构建半导体材料的异质结构,通过利用半导体异质界面电子态/金属态特性把质子局域于异质界面,设计和构造具有最低迁移势垒的超质子高速通道;在燃料电池中,质子经电化学嵌入到异质材料界面,被带正电的氧化铈表面排斥到钴酸钠表面,但同时受到正电钠离子的排挤不能进入钴酸钠内部,因而局域于两者材料的界面空间,从而实现在最低势垒的层间连续快速迁移。实验成功地验证了理论和计算结果,获得了极其优异的质子电导率(较传统钇稳定二氧化锆电解质材料的电导率提升了几个数量级),实现了先进质子陶瓷燃料电池示范(如图)。

半导体异质结构和场诱导加速离子迁移是一个全新的科学机制,在大量的研究基础上,正在形成一个新的学科和方法论:半导体离子学-研究半导体材料的离子输运规律和应用的新兴前沿学科(朱斌教授提出和带领的研究)。对其全面和深入的研究必然带来能源领域新的材料和技术的突破,具有普适的指导意义。

这项工作为科学设计优良质子传输材料提供了一个非常有效的策略,为质子限域传输和可控/可调提供了科学方法,大大加速商业化进程。该成果将促进新一代燃料电池研究和发展,对发展新能源技术具有重要科学意义和应用价值。该研究得到了国家自然科学基金委、东南大学高层次人才引进计划资助。

论文链接:https://science.sciencemag.org/content/369/6500/184?utm_campaign=toc_sci-mag_2020-07-09&et_rid=99219654&et_cid=3401489


声明:化学加刊发或者转载此文只是出于传递、分享更多信息之目的,并不意味认同其观点或证实其描述。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 电话:18676881059,邮箱:gongjian@huaxuejia.cn