欢迎来到化学加!萃聚英才,共享化学!化学加,加您更精彩!客服热线:400-8383-509

专业的精细化工医药产业资源供需及整合平台

中国人民大学物理学系及合作团队发现世界上首个单分子驻极体

来源:中国人民大学      2020-10-19
导读:中国人民大学物理学系及合作团队则首次在Gd@C82单分子器件中发现了单分子驻极体特征,并展示了其信息存储能力,将驻极体的尺寸极限缩小到了1 nm尺度,该研究成果于10月12日以“A Gd@C82 single-molecule electret”为题发表在《自然·纳米技术》(Nature Nanotechnology)上。

磁性是在日常生活中常见的现象,早在5000年前人们就认识了磁现象。天然铁矿石大抵是人类最早发现的永磁体,《鬼谷子·谋篇第十》就记载了2000多年的战国时期利用天然永磁体制作司南的例子。在不对其进行任何操作的情况下,永磁体(permanent magnet)磁矩方向可以长期保持不变。硬盘磁片就是一种永磁体,记录信息则是在其微、纳米级的磁畴上对磁矩进行操作实现的。而在不进行写操作时,它的每个磁畴的磁矩方向不会发生变化,保证了其保存资料的可靠性。磁盘的信息存储密度已经从最初的2000 比特每平方英寸提到到了13亿比特每平方英寸以上。随着信息存储需求的暴涨,人们为提高信息存储密度、缩小磁畴尺寸提出了需求,而单分子磁体(single-molecule magnet)把磁性信号记录单元的尺寸缩小到极致的单个分子层次,也就是磁畴小型化的终极方案。

第一个分子磁体是在上世纪80年代被合成的Mn-12络合物,通常认为直到1993年Novak等人才首次证实该络合物是一种特征温度不高于4 K (约-269℃)且可以用于信息存储的单分子磁体 [Nature 365, 141-143 (1993)]。2018年Layfield等人则首次将单分子磁体的特征温度提高到80K(约-193℃),达到了液氮温度(78K)以上(Science2018,DOI: 10.1126/science.aav0652)。

驻极体(electret)是一类可以与永磁体相类比的材料,可以看作是静电版的永磁体,也可以用于信息存储,还用在静电耳机和麦克风等多个方面。驻极体拥有不加外场时可以长期保持的电极化特性,其极化形式与永磁体中的电子自旋极化导致的磁性不同。驻极体特征早在1732年就被Gray发现了,1839年Faraday(法拉第)从理论上总结了这一特征,而在1892年Heaviside首次将electric和magnet两词组合成了electr-et(electret),明确提出了驻极体的概念。1919年日本物理学家Eguchi首次合成了驻极体材料,引领了驻极体的研究热潮。

尽管驻极体材料已经研究了100余年,且单分子水平的单分子磁体也研究了近30年,单分子驻极体的研究却显得严重滞后了。2018年Nishihara等人首次在K12[Tb3+@P5W30O110]([Tb3+@P5W30])单分子驻极体的粉末样品中观察到了电极化回滞现象(Angew. Chem. Int. Ed., 57, 13429-13432)。

然而,这一回滞现象是众多分子相互耦合的结果还是单个分子自身的表现,一时莫衷一是。2020年,物理学系及合作团队则首次在Gd@C82单分子器件中发现了单分子驻极体特征,并展示了其信息存储能力,将驻极体的尺寸极限缩小到了1 nm尺度。

具体地,他们在1.6 K(约-271.6 ℃)的低温下,利用电致迁移纳米间隙法,在一条约50 nm宽的金属导线上制造出了一道1 nm左右的间隙,并成功构造了几个Gd@C82单分子器件(如图1a所示),随后固定一个非常接近于零(2 mV)的源-漏电压值,通过改变栅极电压Vg,记录不同栅极电压值时的源流电流Ids,便会得到两套谱线,对应两种器件状态(state 1和state 2)。如图1b所示,这两种状态可以通过改变栅压相互切换,在同一个单分子器件中,表现出了两套截然不同的输运特性。

这两种状态大概率对应两种分子构型,但这种构型变化却很难通过观测手段直接显示出来,第一性原理计算便体现出其特有的优势。计算发现,Gd@C82分子中Gd原子处在C82笼上的两个相邻的最稳定吸附位点上,其能量相差 ~ 6 meV(如图2a)。可以看到,Gd@C82分子的正负电荷中心并不重合,即分子存在电偶极矩。Gd原子在两个稳定吸附位点间移动,可改变分子的电偶极矩方向,从而可以利用外加电场调控两个吸附位点的相对稳定性。计算表明只要克服~11 meV的转换势垒,即可实现电场控制下Gd原子在两个位点间移动(如图2)。这本质上就等于实现了在单个分子水平上电偶极矩的可控翻转,即该器件是一种以单分子驻极体(Gd@C82)方式运转的单原子(Gd)信息存储器。

该工作是首次在单分子水平上证明了单分子驻极体的存在,并实现了存储操作,也是当前所知最小的驻极体。该单分子电偶极矩的可控翻转,实际是内嵌原子的位置移动,即该器件是一种以单分子电偶极矩翻转模式运行的单原子存储器。正如下图所示的那样,两个不同的原子位置可以用来编码信息,为未来存储器件小型化提供一种方案,展现出作为一个新兴研究方向的潜力。

该研究成果于10月12日以“A Gd@C82 single-molecule electret”为题发表在《自然·纳米技术》(Nature Nanotechnology)上,物理学系博士后王聪博士(2019年吴玉章奖学金获得者)和南京大学博士生张康康、白占斌及张敏昊博士为论文的共同第一作者。物理学系季威教授和南京大学宋凤麒教授、厦门大学谢素原教授、伦斯勒理工学院史夙飞教授、耶鲁大学Mark A. Reed教授为论文的共同通讯作者。该工作的理论计算部分由人民大学完成,实验部分由合作单位完成。该工作得到了国家重点研发计划、国家自然科学基金委、中国科学院战略重点研究项目、中央高校基本科研业务费等项目的资助。

(中国人民大学物理学系季威课题组)

《自然·纳米技术》是《自然》期刊在纳米科技领域的子刊,也是该领域的旗舰期刊,年发文量仅约300篇,2019年影响因子31.5。这是物理学系2018年在该刊发文后,人民大学首次作为(共同)第一作者和(共同)通讯作者单位在该刊上发文。

全文标题:K. Zhang, C. Wang et al., A Gd@C82 single-molecule electret, Nature Nanotechnology, DOI: 10.1038/s41565-020-00778-z


声明:化学加刊发或者转载此文只是出于传递、分享更多信息之目的,并不意味认同其观点或证实其描述。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 电话:18676881059,邮箱:gongjian@huaxuejia.cn