近日,美国哈佛大学医学院/麻省总医院的冉崇昭教授课题组通过设计了一系列化学发光探针ADLumin-Xs。这类探针在量子产率(QY)、发射波长和信噪比(SNR)方面都具有优势,可以满足三维 (3D)脑成像的要求,实现了对阿尔兹海默症(Alzheimer’s disease, AD)模型小鼠的3D脑成像,并且通过信号强度可以区分健康和AD小鼠。该技术为临床前小动物3D脑成像研究提供一种新方法(图1)。
图1. ADLumin-Xs探针的设计策略以及体内三维成像中的应用说明。图片来源:PNAS
通过在分子骨架中引入呋喃环增加体系的电子密度和限制双键的旋转,以及引入不同的供/吸电子基团的策略,作者设计了探针ADLumin-Xs (X = 5-8),期望实现高量子产率和长发射波长。由DFT理论计算得出,ADLumin-6相对于其他探针具有最低的HOMO-LUMO能量差从而获得最长的发射波长,并且理论计算值与实验值具有很好的相关性,证明了探针设计的合理性(图2)。由于ADLumin-5具有最高的量子产率,ADLumin-6具有最长的化学发光波长,最终作者选择二者进行小鼠体内实验。
图2. ADLumin-Xs探针和DFT理论计算。图片来源:PNAS
在小鼠的体内实验中,ADLumin-5/6均可以透过血脑屏障并且具有良好的组织穿透性。其中,ADLumin-5可使转基因组相较于野生型组的信号增长1.5倍,ADLumin-6可增长5.1倍,这与体外实验结果的趋势性一致(图3)。而且,ADLumin-5在小鼠体内化学发光强度可达4 × 107 photon/s/cm2/sr,满足3D脑成像的基本要求。
图3. ADLumin-5/6探针的体内实验。图片来源:PNAS
在小鼠的3D脑成像研究中,作者发现信号可达小鼠脑部深层0.5 cm处(图4)。并且,对比野生型和AD小鼠不同位置的3D脑成像信号强度均有不同,差别可达2.72倍,相较于二维脑成像的信号差别(1.8倍)有所增加。所以,该方法不仅可以区分健康和AD小鼠,同时也提高了定量分析结果(图5)。
图4. ADLumin-5探针的三维脑成像。图片来源:PNAS
图5. 三维脑成像区分健康和疾病小鼠。图片来源:PNAS
综上所述,作者利用化学发光探针实现了AD小鼠模型的3D脑成像,该方法具有成本低、快速和灵敏度高等优势,有希望应用于更大的动物模型中,为临床前脑疾病研究提供一种新方法。
相关成果近期发表在Proceedings of the National Academy of Sciences (PNAS)上,哈佛大学医学院/麻省总医院的博士后张晶为文章的第一作者,冉崇昭教授、邵义汉教授为共同通讯作者。
原文链接:https://www.pnas.org/doi/10.1073/pnas.2310131120
作者简介
声明:化学加刊发或者转载此文只是出于传递、分享更多信息之目的,并不意味认同其观点或证实其描述。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 电话:18676881059,邮箱:gongjian@huaxuejia.cn