欢迎来到化学加!萃聚英才,共享化学!化学加,加您更精彩!客服热线:400-8383-509

化学加_合成化学产业资源聚合服务平台

上海交通大学Science!华中科技大学Science!武汉大学/华中科技大学Nature!

来源:化学加网综合      2024-03-15
导读:上海交通大学在钙钛矿太阳能电池稳定性领域获得重要进展;华中科技大学武汉光电国家研究中心韩宏伟团队突破第三代光伏技术瓶颈;武汉大学/华中科技大学联合团队揭示Gabija免疫系统防御机制
1、Science:上海交通大学在钙钛矿太阳能电池稳定性领域获得重要进展
image.png
近日,上海交通大学材料科学与工程学院韩奇峰副教授和韩礼元教授在钙钛矿太阳能电池稳定性领域获得重要进展,相关成果“Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells”发表在国际顶级期刊Science上。材料学院2021级博士唐宏才、2018级博士沈志超为论文共同第一作者,韩奇峰副教授、韩礼元教授为论文通讯作者。上海交通大学材料学院为论文唯一完成单位。
image.png

SCIENCE | VOLUME 383 | ISSUE 6688 | 15 MAR 2024
反式结构的钙钛矿太阳电池极有希望在未来实现产业化。目前自组装空穴传输分子(SAM)的引入使得反式结构器件的效率不断突破,目前已经超过26%,接近单晶硅太阳电池的最高水平(26.8%)。团队研究发现当SAM在ITO自然吸附的羟基表面上结合时,会被钙钛矿前驱液中强极性溶剂所脱附,从而不能实现锚定分子在ITO表面100%的覆盖。未锚定的SAM分子虽然依旧能在钙钛矿结晶后沉积在钙钛矿层底部,但是在钙钛矿器件长期运行时会逐渐扩散,最终形成非致密层,从而失去对电子的阻挡作用引起器件效率下降。通过使用原子层沉积的方法,在表面形成具有共价键结合羟基的全覆盖锡掺杂氧化铟单层(ALD ITO),使SAM在ALD ITO表面实现了稳定且致密的锚定,从根本上解决了SAM吸附不稳定这一问题。该团队进一步地研发出了与基底间能够形成三齿键合的含甲氧基硅烷基团的SAM分子DC-TMPS。与常用的双齿键合磷酸基团分子相比,它能基底形成更高的结合能,从而进一步提升了器件的稳定性。
团队最终制备的反式钙钛矿太阳能电池获得了24.8%的光电转化效率。稳定性测试结果表明,器件在85%相对湿度和85℃的条件下储存1000小时,仍保持了初始效率的98.5%;在85℃下最大功率点输出1200小时后,保持了初始效率的98.2%。该结果均明显优于对比样品。该工作为推动高效稳定反式钙钛矿太阳能电池的产业化目标提供了重要的科学和技术参考。

image.png
图1: (A-C) ITO表面经过不同溶剂冲洗后,XPS中O1s峰变化; (D) ITO上SAM覆盖因子在不同溶剂冲洗后的变化; (E-F) SAM/ITO在不同溶剂冲洗后表面电势变化; (H) SAM/ITO在不同溶剂清洗下变化的示意图
image.png
图2: (A-B) ALD ITO表面经过不同溶剂冲洗后,XPS中O1s峰变化; (C) ALD ITO上SAM覆盖因子在不同溶剂冲洗后的变化; (D)半器件结构示意图
该研究工作获得了国家重点研发计划(2020YFB1506400;2021YFB3800100)和国家自然科学基金(U20A20245;U21A20171;11834011;12074245)等项目的资助。
文章链接:https://www.science.org/doi/10.1126/science.adj9602

2、Science:武汉光电国家研究中心韩宏伟团队突破第三代光伏技术瓶颈

3月15日,Science杂志刊发华中科技大学武汉光电国家研究中心韩宏伟教授团队的研究论文“Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells”《电子注入和缺陷钝化机制助力高性能介观钙钛矿太阳能电池》。研究显示,不同于传统p-n结器件光电转换动力学过程,介观钙钛矿太阳能电池电荷分离采用载流子3D注入机制,结合界面钝化,基于碳电极的无空穴传输层可印刷介观钙钛矿太阳能电池光电转化效率获得大幅提升,突破了全湿法制备光伏器件效率低的传统认知。

image.png
为实现低成本光伏发电,基于固相晶锭切片工艺的晶硅电池、基于真空气相沉积工艺的薄膜电池以及基于湿法加工工艺的新兴太阳能电池先后被研制出来。其中,新兴太阳能电池可利用低成本的湿法涂膜设备进行简便加工,被认为是最有希望实现低成本制造的技术。然而,相较于晶硅或薄膜电池,新兴太阳能电池在光电转换效率和工作稳定性方面面临巨大挑战,其根本原因是湿法加工制备的薄膜本身处于非晶状态或结晶质量较差,其光生载流子寿命短且传输速度慢;同时存在“针孔”等形貌缺陷,不利于大尺寸组件的制备进而导致产品良品率低;此外,结晶质量不高的薄膜或薄膜材料本身如钙钛矿吸光层在光热电等作用下容易退化,导致载流子传输能力的进一步下降,从而带来器件性能的衰减。
为此,韩宏伟教授团队自主开发了可全湿法加工的可印刷介观钙钛矿太阳能电池,其特点是在单一导电衬底上逐层印刷介孔二氧化钛层、介孔二氧化锆层及介孔碳电极层,之后填注钙钛矿材料到三层介孔膜结构中即完成器件的制备。2014年,团队在国际上首次报道了光照稳定的钙钛矿太阳能电池,研究成果“改变了人们对钙钛矿太阳能电池‘本质上不稳定’的看法” 【Science 345, 295 (2014)】;2018年,团队以研制的3600cm2尺寸的可印刷介观钙钛矿太阳能模组组装了110平米实验性示范系统【Science 361, 1214 (2018)】,充分展示了该器件在成本控制、稳定性及大面积制备等方面的巨大优势。然而,依据传统p-n结理论,空穴传输层的缺失使得钙钛矿吸光材料与碳电极直接接触导致严重的复合,进而影响效率的提升。
image.png
在本工作中,通过模拟仿真及载流子动力学测试,三层介孔膜结构器件展现了不同于传统p-n结电荷分离机制。在传统平面堆叠光伏器件中,光生载流子(空穴和电子)产生后在吸光层中长距离迁移,然后在空穴传输层(或电子传输层)界面被选择性提取,对应的电子传输层(或空穴传输层)起着阻挡异种载流子(空穴或电子)复合的作用,因此在传统太阳能电池中电子传输层及空穴传输层的存在是获取高光电转化效率的必要条件。而在三层介孔膜结构的可印刷介观太阳能电池中,吸光材料被局域在三维互穿网络结构的电子传输层纳米孔中,吸光材料所产生的光生电子通过3D注入过程快速有效的注入到介观电子传输层中,电子和空穴分别在电子传输层和吸光材料层中传输。这种介孔膜中载流子3D注入过程解耦了充分吸收光所需的吸收层厚度与确保电荷充分收集所需的载流子扩散长度之间的矛盾,在电子传输层/钙钛矿界面,而不是在钙钛矿/碳界面的复合,是导致电压损失的主要原因,因此无空穴传输层的阻挡,三层介孔膜结构的可印刷介观钙钛矿太阳能电池也可获得超高的光电转化效率。为此,针对多孔电子传输层内表面氧空位缺陷带来的性能损失关键制约,利用由软路易斯酸阳离子与硬路易斯碱阴离子构成的盐钝化剂进行处理,促使氧空位电离释放所束缚的电子,有效钝化了氧空位,成功将可印刷介观钙钛矿太阳能电池效率提升至第三方认证的22.3%。与此同时,57.5cm2微型模组开口面积效率达18.2%,模组中单条子电池的电压超过1.1伏。
该工作创新性的提出了载流子3D注入机制。下一步,通过对介观光电子学的深入研究,有望为基于全湿法工艺的下一代高性能光伏,乃至电致发光、光电探测器件的超低成本大面积制造提供可行方案和理论支撑。
华中科技大学为唯一通讯作者单位,华中科技大学刘佳乐、武汉万度光能研究院陈夏岩、华中科技大学陈开中、中科院大连化学物理研究所田文明为共同第一作者。华中科技大学韩宏伟教授、梅安意教授、凌福日副教授为共同通讯作者。该项研究工作得到了武汉万度光能研究院在器件制备、大连化学物理研究所金盛烨研究员团队、西安交通大学苏亚琼研究员团队、中国华电集团李小江研究员、李啸宇博士等在载流子动力学分析、第一性原理计算等方面的帮助。同时,该工作获得了国家自然科学基金集成项目、面上项目、青年科学基金项目以及中科院青年基础研究项目等项目支持。
全文链接:https://www.science.org/doi/10.1126/science.adk9089

3、Nature:武汉大学/华中科技大学联合团队揭示Gabija免疫系统防御机制

北京时间2024年3月12日,Nature(《自然》)以加速预览形式在线发表了武汉大学药学院、泰康生命医学中心、武汉大学中南医院心血管病医院王隆飞教授团队关于Gabija免疫系统防御机制的最新研究论文,题为Structures and activation mechanism of the Gabija anti-phage system。王隆飞教授和华中科技大学生命学院朱斌教授为该论文的共同通讯作者,武汉大学药学院博士生李静、华中科技大学生命学院博士后成锐、武汉大学药学院副研究员王之明为共同第一作者。武汉大学为文章第一完成单位。

image.png

从左至右:袁舞柳、李静、王隆飞、王之明、肖军

Gabija系统是自然界已知丰度第三,仅次于限制修饰系统和CRISPR系统的原核生物免疫系统,仅由GajA和GajB两个基因组成却可以高效免疫各类烈性噬菌体的侵染,是自然界最广谱高效且精简的免疫系统之一。GajA蛋白是一种序列特异性的核酸内切酶,且活性可以被ATP抑制,GajB蛋白是一种解旋酶类似物,可以水解ATP提供能量。近期已有两篇Nature研究论文报道了噬菌体逃逸Gabija系统防御的结构与机制,Gabija免疫机制受到高度关注,但其抵抗噬菌体侵染的分子机制尚未阐释清楚。

image.png

该研究采用单颗粒冷冻电镜和生物化学等技术手段,首次捕捉到了GajA核酸酶与DNA结合的激活状态和与ATP结合的抑制状态,从分子层面完整的阐释了Gabija系统的工作机制。Gabija系统在细胞正常生理状态下被ATP抑制,在细菌受到噬菌体侵染后,由于噬菌体的快速复制消耗大量ATP,使得GajA不再受到ATP抑制。GajA四聚体两端的Toprim结构域向两边打开以方便DNA的结合,DNA在切割位点附近发生弯曲,以便于GajA的切割。带切口的DNA又可以激活GajB的ATP水解活性,两种酶活性巧妙配合最终导致细菌死亡和噬菌体感染的流产。因此,Gabija系统可能是以代谢物的耗竭作为危险信号,是一种独特的原核生物免疫系统。该研究加深了人们对自然免疫系统的理解,为探索代谢物作为免疫防御的潜在危险信号提供了新的研究方向。

image.png

据悉,该研究得到了武汉大学科研公共服务条件平台冷冻电镜机组的大力支持,冷冻电镜机组特聘高级工程师李丹阳和实验员李香凝在数据收集工作中提供了重要协助。该研究受到国家重点研发计划项目、武汉大学启动经费、武汉大学泰康生命医学中心科研经费和武汉大学大型仪器设备开放补贴的共同资助。

image.png

论文链接:https://www.nature.com/articles/s41586-024-07270-x

声明:化学加刊发或者转载此文只是出于传递、分享更多信息之目的,并不意味认同其观点或证实其描述。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 电话:18676881059,邮箱:gongjian@huaxuejia.cn